Neural adaptation

Curr Biol. 2021 Feb 8;31(3):R110-R116. doi: 10.1016/j.cub.2020.11.054.

Abstract

The term 'neural adaptation' refers to the common phenomenon of decaying neuronal activities in response to repeated or prolonged stimulation. Many different roles of adaptation in neural computations have been discussed. On a single-cell level adaptation introduces a high-pass filter operation as a basic element for predictive coding. Interactions of adaptation processes with nonlinearities are key to many more computations including generation of invariances, stimulus selectivity, denoising, and sparsening. Neural adaptation is observed all the way along neuronal pathways from the sensory periphery to the motor output and adaptation usually gets stronger at higher levels. Non-adapting neurons or neurons that increase their sensitivity are rare exceptions. What computations arise by repeated adaptation mechanisms along a processing pathway? After giving some background on neural adaptation, underlying mechanisms, dynamics, and resulting filter properties, I will discuss computational properties of four examples of serial and parallel adaptation processes, demonstrating that adaptation acts together with other mechanisms, in particular threshold nonlinearities, to eventually compute meaningful perceptions. Python code and further details of the simulations illustrating this primer are available at https://github.com/janscience/adaptationprimer.

MeSH terms

  • Acclimatization
  • Adaptation, Physiological*
  • Neurons*