Effect of Pore Connectivity of Pore-Opened Hierarchical MOR Zeolites on Catalytic Behaviors and Coke Formation in Ethanol Dehydration

ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8294-8305. doi: 10.1021/acsami.0c19780. Epub 2021 Feb 9.

Abstract

The hierarchical zeolite is one of the most promising materials for catalytic applications. However, the effect of its pore connectivity on catalytic behaviors and coke formation has not clearly been revealed. In this contribution, we demonstrate the visualization of the mesopore architecture in three-dimensional perspectives together with the pore connectivity network of pore-opened hierarchical mordenite (MOR), fabricated by the seed-assisted template-free synthesis followed by the fluoride treatment via the electron tomography (ET) technique. Interestingly, the pore-opened zeolites clearly display higher catalytic performance (approximately 80% of ethylene yield) in ethanol dehydration with respect to the parent one due to their additional pore-opened structures connected to the external surfaces of zeolites. In addition, the effect of pore connectivity network on the coke location and type obtained from ethanol conversion has been observed. It was found that the porous structure of the etched sample is directly connected to the external surface, and then, the large area of crystals can contribute to the reaction. Conversely, only a small amount of closed mesopores is observed inside the crystals in the case of the untreated sample, and therefore, the molecules cannot easily penetrate inside crystals for the catalytic reaction. These results open up promising perspectives for the development of hierarchical catalysts including fabrication by the template-free synthesis approach, pore-architecture characterization, and catalytic applications.

Keywords: electron tomography; ethanol dehydration; fluoride etching; hierarchical zeolite; pore connectivity.