Design and Locomotion Study of Stick-Slip Piezoelectric Actuator Using Two-Stage Flexible Hinge Structure

Micromachines (Basel). 2021 Feb 4;12(2):154. doi: 10.3390/mi12020154.

Abstract

A novel piezoelectric actuator using a two-stage flexure hinge structure is proposed in this paper, which is used in a compact and high-precision electromechanical field. The two-stage flexure hinge structure is used to provide horizontal thrust and vertical clamping force to the driving feet, which solves the problems of unstable clamping force and insufficient load capacity in traditional stick-slip piezoelectric actuators. Firstly, the main structure of the driver and the working process under the triangular wave excitation voltage are briefly introduced. Secondly, after many simulation tests, the structure of the actuator is optimized and the stability of the structure in providing clamping force is verified. Finally, through the research of the operating performance, when the amplitude is 150 V and the frequency is 3.25 kHz as the excitation source, the maximum speed can reach 338 mm/s and can bear about 3 kg load. It can be seen from the analysis that the two-stage flexure hinge structure can improve the displacement trajectory.

Keywords: clamping force; displacement amplification structure; piezoelectric actuator; stick-slip type.