Devising Digital Twins DNA Paradigm for Modeling ISO-Based City Services

Sensors (Basel). 2021 Feb 4;21(4):1047. doi: 10.3390/s21041047.

Abstract

Digital twins (DTs) technology has recently gained attention within the research community due to its potential to help build sustainable smart cities. However, there is a gap in the literature: currently no unified model for city services has been proposed that can guarantee interoperability across cities, capture each city's unique characteristics, and act as a base for modeling digital twins. This research aims to fill that gap. In this work, we propose the DT-DNA model in which we design a city services digital twin, with the goal of reflecting the real state of development of a city's services towards enhancing its citizens' quality of life (QoL). As it was designed using ISO 37120, one of the leading international standards for city services, the model guarantees interoperability and allows for easy comparison of services within and across cities. In order to test our model, we built DT-DNA sequences of services in both Quebec City and Boston and then used a DNA alignment tool to determine the matching percentage between them. Results show that the DT-DNA sequences of services in both cities are 46.5% identical. Ground truth comparisons show a similar result, which provides a preliminary proof-of-concept for the applicability of the proposed model and framework. These results also imply that one city performs better than the other. Therefore, we propose an algorithm to compare cities based on the proposed DT-DNA and, using Boston and Quebec City as a case study, demonstrate that Boston has better services towards enhancing QoL for its citizens.

Keywords: DNA; ISO 37120; artificial intelligence; data analysis; digital twin; smart health; standards; well-being.

MeSH terms

  • Cities
  • DNA*
  • Quality of Life*

Substances

  • DNA