A Robust PtNi Nanoframe/N-Doped Graphene Aerogel Electrocatalyst with Both High Activity and Stability

Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9590-9597. doi: 10.1002/anie.202015679. Epub 2021 Mar 17.

Abstract

Insufficient catalytic activity and stability and high cost are the barriers for Pt-based electrocatalysts in wide practical applications. Herein, a hierarchically porous PtNi nanoframe/N-doped graphene aerogel (PtNiNF-NGA) electrocatalyst with outstanding performance toward methanol oxidation reaction (MOR) in acid electrolyte has been developed via facile tert-butanol-assisted structure reconfiguration. The ensemble of high-alloying-degree-modulated electronic structure and correspondingly the optimum MOR reaction pathway, the structure superiorities of hierarchical porosity, thin edges, Pt-rich corners, and the anchoring effect of the NGA, endow the PtNiNF-NGA with both prominent electrocatalytic activity and stability. The mass and specific activity (1647 mA mgPt -1 , 3.8 mA cm-2 ) of the PtNiNF-NGA are 5.8 and 7.8 times higher than those of commercial Pt/C. It exhibits exceptional stability under a 5-hour chronoamperometry test and 2200-cycle cyclic voltammetry scanning.