Usage of Quantum Chemical Methods to Understand the Formation of Concomitant Polymorphs of Acetyl 2-(N-(2-Fluorophenyl)imino)coumarin-3-carboxamide

ACS Omega. 2021 Jan 25;6(4):3120-3129. doi: 10.1021/acsomega.0c05516. eCollection 2021 Feb 2.

Abstract

Crystallization of concomitant polymorphs is a very intriguing process that is difficult to be studied experimentally. A comprehensive study of two polymorphic modifications of acetyl 2-(N-(2-fluorophenyl)imino)coumarin-3-carboxamide using quantum chemical methods has revealed molecular and crystal structure dependence on crystallization conditions. Fast crystallization associated with a kinetically controlled process results in the formation of a columnar structure with a nonequilibrium molecular conformation and more isotropic topology of interaction energies between molecules. Slow crystallization may be considered as a thermodynamically controlled process and leads to the formation of a layered crystal structure with the conformation of the molecule corresponding to local minima and anisotropic topology of interaction energies. Fast crystallization results in the formation of a lot of weak intermolecular interactions, while slow crystallization leads to the formation of small amounts of stronger interactions.