MoniNet With Concurrent Analytics of Temporal and Spatial Information for Fault Detection in Industrial Processes

IEEE Trans Cybern. 2022 Aug;52(8):8340-8351. doi: 10.1109/TCYB.2021.3050398. Epub 2022 Jul 19.

Abstract

Modern industrial plants generally consist of multiple manufacturing units, and the local correlation within each unit can be used to effectively alleviate the effect of spurious correlation and meticulously reflect the operation status of the process system. Therefore, the local correlation, which is called spatial information here, should also be taken into consideration when developing the monitoring model. In this study, a cascaded monitoring network (MoniNet) method is proposed to develop the monitoring model with concurrent analytics of temporal and spatial information. By implementing convolutional operation to each variable, the temporal information that reveals dynamic correlation of process data and spatial information that reflects local characteristics within individual operation unit can be extracted simultaneously. For each convolutional feature, a submodel is developed and then all the submodels are integrated to generate a final monitoring model. Based on the developed model, the operation status of the newly collected sample can be identified by comparing the calculated statistics with their corresponding control limits. Similar to the convolutional neural network (CNN), the MoniNet can also expand its receptive field and capture deeper information by adding more convolutional layers. Besides, the filter selection and submodel development in MoniNet can be replaced to generalize the proposed network to many existing monitoring strategies. The performance of the proposed method is validated using two real industrial processes. The illustration results show that the proposed method can effectively detect process anomalies by concurrent analytics of temporal and spatial information.

MeSH terms

  • Neural Networks, Computer*