Density Distribution Maps: A Novel Tool for Subcellular Distribution Analysis and Quantitative Biomedical Imaging

Sensors (Basel). 2021 Feb 2;21(3):1009. doi: 10.3390/s21031009.

Abstract

Subcellular spatial location is an essential descriptor of molecules biological function. Presently, super-resolution microscopy techniques enable quantification of subcellular objects distribution in fluorescence images, but they rely on instrumentation, tools and expertise not constituting a default for most of laboratories. We propose a method that allows resolving subcellular structures location by reinforcing each single pixel position with the information from surroundings. Although designed for entry-level laboratory equipment with common resolution powers, our method is independent from imaging device resolution, and thus can benefit also super-resolution microscopy. The approach permits to generate density distribution maps (DDMs) informative of both objects' absolute location and self-relative displacement, thus practically reducing location uncertainty and increasing the accuracy of signal mapping. This work proves the capability of the DDMs to: (a) improve the informativeness of spatial distributions; (b) empower subcellular molecules distributions analysis; (c) extend their applicability beyond mere spatial object mapping. Finally, the possibility of enhancing or even disclosing latent distributions can concretely speed-up routine, large-scale and follow-up experiments, besides representing a benefit for all spatial distribution studies, independently of the image acquisition resolution. DDMaker, a Software endowed with a user-friendly Graphical User Interface (GUI), is also provided to support users in DDMs creation.

Keywords: computer-assisted; cultured; data visualization; distribution density maps; fluorescence; image processing; microscopy; subcellular mapping; tumor cells.

MeSH terms

  • Image Processing, Computer-Assisted
  • Microscopy*
  • Software*