Iron(III)-tCDTA derivatives as MRI contrast agents: Increased T1 relaxivities at higher magnetic field strength and pH sensing

Magn Reson Med. 2021 Jun;85(6):3370-3382. doi: 10.1002/mrm.28664. Epub 2021 Feb 4.

Abstract

Purpose: Low molecular weight iron(III) complex-based contrast agents (IBCA) including iron(III) trans-cyclohexane diamine tetraacetic acid [Fe(tCDTA)]- could serve as alternatives to gadolinium-based contrast agents in MRI. In search for IBCA with enhanced properties, we synthesized derivatives of [Fe(tCDTA)]- and compared their contrast effects.

Methods: Trans-cyclohexane diamine tetraacetic acid (tCDTA) was chemically modified in 2 steps: first the monoanhydride of Trans-cyclohexane diamine tetraacetic acid was generated, and then it was coupled to amines in the second step. After purification, the chelators were analyzed by high-performance liquid chromatography, mass spectrometry, and NMR spectrometry. The chelators were complexed with iron(III), and the relaxivities of the complexes were measured at 0.94, 1.5, 3, and 7 Tesla. Kinetic stabilities of the complexes were analyzed spectrophotometrically and the redox properties by cyclic voltammetry.

Results: Using ethylenediamine (en) and trans-1,4-diaminocyclohexane, we generated monomers and dimers of tCDTA: en-tCDTA, en-tCDTA-dimer, trans-1,4-diaminocyclohexane-tCDTA, and trans-1,4-diaminocyclohexane-tCDTA-dimer. The iron(III) complexes of these derivatives had similarly high stabilities as [Fe(tCDTA)]- . The iron(III) complexes of the trans-1,4-diaminocyclohexane derivatives had higher T1 relaxivities than [Fe(tCDTA)]- that increased with increasing magnetic field strengths and were highest at 6.8 L·mmol-1 ·s-1 per molecule for the dimer. Remarkably, the relaxivity of [Fe(en-tCDTA)]+ had a threefold increase from neutral pH toward pH6.

Conclusion: Four iron(III) complexes with similar stability in comparison to [Fe(tCDTA)]- were synthesized. The relaxivities of trans-1,4-diaminocyclohexane-tCDTA and trans-1,4-diaminocyclohexane-tCDTA-dimer complexes were in the same range as gadolinium-based contrast agents at 3 Tesla. The [Fe(en-tCDTA)]+ complex is a pH sensor at weakly acidic pH levels, which are typical for various cancer types.

Keywords: gadolinium; iron chelate; iron oxide nanoparticles; low-molecular-weight iron(III)-based contrast agents; magnetic resonance imaging; nephrogenic systemic fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Contrast Media*
  • Hydrogen-Ion Concentration
  • Iron*
  • Magnetic Fields
  • Magnetic Resonance Imaging

Substances

  • Contrast Media
  • Iron