Fabrication of Bioresource-Derived Porous Carbon-Supported Iron as an Efficient Oxidase Mimic for Dual-Channel Biosensing

Anal Chem. 2021 Feb 16;93(6):3130-3137. doi: 10.1021/acs.analchem.0c04386. Epub 2021 Feb 4.

Abstract

Herein, we designed a new strategy for fabricating a renewable bioresource-derived N-doped hierarchical porous carbon-supported iron (Fe/NPC)-based oxidase mimic. The obtained results suggested that Fe/NPC possessed a large specific surface area (1144 m2/g) and pore volume (0.62 cm3/g) to afford extensive Fe-Nx active sites. Taking advantages of the remarkable oxidase-mimicking activity, outstanding stability, and reusability of Fe/NPC, a novel dual-channel biosensing system was strategically fabricated for sensitively determining acetylcholinesterase (AChE) through the integration of Fe/NPC and fluorescent silver nanoclusters (AgNCs) for the first time. The limits of detection for AChE can achieve as low as 0.0032 and 0.0073 U/L by the outputting fluorometric and colorimetric dual signals, respectively. Additionally, this dual-signal system was applied to analyze human erythrocyte AChE and its inhibitor with robust analytical performance. This work provides one sustainable and effective avenue to apply a bioresource for fabricating an Fe/NPC-based oxidase mimic with high catalytic performance and also gives new impetuses for developing novel biosensors by applying Fe/NPC-based enzyme mimics as substitutes for the natural enzyme.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon*
  • Colorimetry
  • Humans
  • Iron*
  • Oxidoreductases
  • Porosity

Substances

  • Carbon
  • Iron
  • Oxidoreductases