Dealiasing High-Frame-Rate Color Doppler Using Dual-Wavelength Processing

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2117-2128. doi: 10.1109/TUFFC.2021.3056932. Epub 2021 May 25.

Abstract

Doppler ultrasound is the premier modality to analyze blood flow dynamics in clinical practice. With conventional systems, Doppler can either provide a time-resolved quantification of the flow dynamics in sample volumes (spectral Doppler) or an average Doppler velocity/power [color flow imaging (CFI)] in a wide field of view (FOV) but with a limited frame rate. The recent development of ultrafast parallel systems made it possible to evaluate simultaneously color, power, and spectral Doppler in a wide FOV and at high-frame rates but at the expense of signal-to-noise ratio (SNR). However, like conventional Doppler, ultrafast Doppler is subject to aliasing for large velocities and/or large depths. In a recent study, staggered multi-pulse repetition frequency (PRF) sequences were investigated to dealias color-Doppler images. In this work, we exploit the broadband nature of pulse-echo ultrasound and propose a dual-wavelength approach for CFI dealiasing with a constant PRF. We tested the dual-wavelength bandpass processing, in silico, in laminar flow phantom and validated it in vivo in human carotid arteries ( n = 25 ). The in silico results showed that the Nyquist velocity could be extended up to four times the theoretical limit. In vivo, dealiased CFI were highly consistent with unfolded Spectral Doppler ( r2=0.83 , y=1.1x+0.1 , N=25 ) and provided consistent vector flow images. Our results demonstrate that dual-wavelength processing is an efficient method for high-velocity CFI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Flow Velocity
  • Carotid Arteries* / diagnostic imaging
  • Computer Simulation
  • Humans
  • Phantoms, Imaging
  • Ultrasonography, Doppler*