Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life

PLoS One. 2021 Feb 2;16(2):e0246400. doi: 10.1371/journal.pone.0246400. eCollection 2021.

Abstract

Objective: Leukocyte telomere length (LTL) is one of the markers of biological aging as shortening occurs over time. Shorter LTL has been associated with adiposity and a higher risk of cardiovascular diseases. The objective was to assess LTL and LTL shortening during the first 2 years of life in healthy, term-born infants and to associate LTL shortening with potential stressors and body composition.

Study design: In 145 healthy, term-born infants (85 boys), we measured LTL in blood, expressed as telomere to single-gene copy ratio (T/S ratio), at 3 months and 2 years by quantitative PCR technique. Fat mass (FM) was assessed longitudinally by PEAPOD, DXA, and abdominal FM by ultrasound.

Results: LTL decreased by 8.5% from 3 months to 2 years (T/S ratio 4.10 vs 3.75, p<0.001). LTL shortening from 3 months to 2 years associated with FM%(R = 0.254), FM index(R = 0.243) and visceral FM(R = 0.287) at 2 years. LTL shortening tended to associate with gain in FM% from 3 to 6 months (R = 0.155, p = 0.11), in the critical window for adiposity programming. There was a trend to a shorter LTL in boys at 2 years(p = 0.056). LTL shortening from 3 months to 2 years was not different between sexes.

Conclusion: We present longitudinal LTL values and show that LTL shortens considerably (8.5%) during the first 2 years of life. LTL shortening during first 2 years of life was associated with FM%, FMI and visceral FM at age 2 years, suggesting that adverse adiposity programming in early life could contribute to more LTL shortening.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abdominal Fat / metabolism
  • Adiposity
  • Body Composition
  • Body Fat Distribution*
  • Female
  • Humans
  • Infant
  • Intra-Abdominal Fat / metabolism
  • Leukocytes / metabolism
  • Longitudinal Studies
  • Male
  • Telomere Homeostasis*
  • Telomere Shortening*