Nanometallic antenna-assisted amorphous silicon waveguide integrated bolometer for mid-infrared

Opt Lett. 2021 Feb 1;46(3):677-680. doi: 10.1364/OL.412529.

Abstract

Bolometers are thermal detectors widely applied in the mid-infrared (MIR) wavelength range. In an integrated sensing system on chip, a broadband scalable bolometer absorbing the light over the whole MIR wavelength range could play an important role. In this work, we have developed a waveguide-based bolometer operating in the wavelength range of 3.72-3.88 µm on the amorphous silicon (a-Si) platform. Significant improvements in the bolometer design result in a 20× improved responsivity compared to earlier work on silicon-on-insulator (SOI). The bolometer offers 24.62% change in resistance per milliwatt of input power at 3.8 µm wavelength. The thermal conductance of the bolometer is 3.86×10-5W/K, and an improvement as large as 3 orders magnitude may be possible in the future through redesign of the device geometry.