Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20

ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6450-6460. doi: 10.1021/acsami.0c18245. Epub 2021 Feb 2.

Abstract

In this study, we achieved a facile and low-cost (18-22 USD/g) synthesis of spiro[fluorene-9,9-phenanthren-10-one]-based interfacial layer materials (MSs; designated MS-PC, MS-PA, MS-OC, and MS-OA). Carbazoles and dimethylacridine substituents with an extended π-conjugation achieved through ortho- or para-orientations were used as donors at the spiro[fluorene-9,9'-phenanthren-10'-one] moiety. Highly efficient and stable inverted perovskite solar cells (PSCs) with the device architecture of ITO/NiOx/MSs/perovskite/PC61BM/BCP/Ag can be achieved to improve the surface morphology of NiOx when MSs are adopted as the interfacial layer. During a morphological study, the ortho-orientated donor of MS-OC and MS-OA has spherical structures indicated that the films were smooth and that the films of perovskite deposited on them had large grain size and uniformity. The photoluminescence properties of the perovskite layers on the NiOx/MSs were showed better hole-transporting capabilities than the bare NiOx. The dual-functional interfacial layer has shown defect passivation effect, it not only improved the surface morphology of NiOx but also enlarged the perovskite layer grain size. The best PSC device performance of the NiOx/MS-OC was characterized by 22.34 mA cm-2 short-circuit current density (Jsc), 1.128 V open-circuit voltage (Voc), and 80.8% fill factor (FF), resulting in 20.34% power conversion efficiency (PCE). The NiOx/MS-OC PSCs showed good long-term device stability, even retained the original PCE of 93.16% after 370 days under argon (25 °C). Owing to the superior perovskite morphologies of the NiOx/MSs, the resulting devices outperformed the bare NiOx-based PSCs.

Keywords: interfacial layer; nondopant; perovskite solar cells; p−i−n-type perovskite solar cells; spiro[fluorene-9,9′-phenanthren-10′-one]-based hole-transporting material.