Taxis in archaea

Emerg Top Life Sci. 2018 Dec 14;2(4):535-546. doi: 10.1042/ETLS20180089.

Abstract

Microorganisms can move towards favorable growth conditions as a response to environmental stimuli. This process requires a motility structure and a system to direct the movement. For swimming motility, archaea employ a rotating filament, the archaellum. This archaea-specific structure is functionally equivalent, but structurally different, from the bacterial flagellum. To control the directionality of movement, some archaea make use of the chemotaxis system, which is used for the same purpose by bacteria. Over the past decades, chemotaxis has been studied in detail in several model bacteria. In contrast, archaeal chemotaxis is much less explored and largely restricted to analyses in halophilic archaea. In this review, we summarize the available information on archaeal taxis. We conclude that archaeal chemotaxis proteins function similarly as their bacterial counterparts. However, because the motility structures are fundamentally different, an archaea-specific docking mechanism is required, for which initial experimental data have only recently been obtained.

Keywords: archaeal proteins; archaellum; chemotaxis; flagella; motility.