Multi-Micro/Nanolayer Films Based on Polyolefins: New Approaches from Eco-Design to Recycling

Polymers (Basel). 2021 Jan 28;13(3):413. doi: 10.3390/polym13030413.

Abstract

This paper describes a future-oriented approach for the valorization of polyethylene-based multilayer films. The method involves going from eco-design to mechanical recycling of multilayer films via forced assembly coextrusion. The originality of this study consists in limiting the number of constituents, reducing/controlling the thickness of the layers and avoiding the use of tie layers. The ultimate goal is to improve the manufacturing of new products from recycled multilayer materials by simplifying their recyclability. Within this framework, new structures were developed with two polymer systems: polyethylene/polypropylene and polyethylene/polystyrene, with nominal micro- and nanometric thicknesses. Hitherto, the effect of the multi-micro/nanolayer architecture as well as initial morphological and mechanical properties was evaluated. Several recycling processes were investigated, including steps such as: (i) grinding; (ii) monolayer cast film extrusion; or (iii) injection molding with or without an intermediate blending step by twin-screw extrusion. Subsequently, the induced morphological and mechanical properties were investigated depending on the recycling systems and the relationships between the chosen recycling processes or strategies, and structure and property control of the recycled systems was established accordingly. Based on the results obtained, a proof of concept was demonstrated with the eco-design of multi-micro/nanolayer films as a very promising solution for the industrial issues that arise with the valorization of recycled materials.

Keywords: coextrusion; eco-design; multilayers; recycling.