Complete Atomic Oxygen and UV Protection for Polymer and Composite Materials in a Low Earth Orbit

ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6670-6677. doi: 10.1021/acsami.0c21552. Epub 2021 Feb 1.

Abstract

With the realization of larger and more complex space installations, an increase in the surface area exposed to atomic oxygen (AO) and ultraviolet (UV) effects is expected, making structural integrity of space structures essential for future development. In a low Earth orbit (LEO), the effects of AO and UV degradation can have devastating consequences for polymer and composite structures in satellites and space installations. Composite materials such as carbon fiber-reinforced polymer (CFRP) or polymer materials such as polyetherimide and polystyrene are widely used in satellite construction for various applications including structural components, thermal insulation, and importantly radio frequency (RF) assemblies. In this paper, we present a multilayered material protection solution, a multilayered protection barrier, that mitigates the effects of AO and UV without disrupting the functional performance of tested assemblies. This multilayered protection barrier deposited via a custom-built plasma-enhanced chemical vapor deposition (PECVD) system is designed so as to deposit all necessary layers without breaking vacuum to maximize the adhesion to the surface of the substrate and to ensure no pinhole erosion is present. In the multilayer solution, a moisture and outgassing barrier (MOB) is coupled with an AO and UV capping layer to provide complete protection.

Keywords: PECVD; atomic oxygen; composites; low Earth orbit; ultraviolet.