Structural and Thermodynamics Studies on Polyaminophosphonate Ligands for Uranyl Decorporation

Inorg Chem. 2021 Feb 15;60(4):2149-2159. doi: 10.1021/acs.inorgchem.0c02145. Epub 2021 Feb 1.

Abstract

The development of actinide decorporation agents with high complexation affinity, high tissue specificity, and low biological toxicity is of vital importance for the sustained and healthy development of nuclear energy. After accidental actinide intake, sequestration by chelation therapy to reduce acute damage is considered as the most effective method. In this work, a series of bis- and tetra-phosphonated pyridine ligands have been designed, synthesized, and characterized for uranyl (UO22+) decorporation. Owing to the absorption of the ligand and the luminescence of the uranyl ion, UV-vis spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS) were used to probe in situ complexation and structure variation of the complexes formed by the ligands with uranyl. Density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) spectroscopy on uranyl-ligand complexes revealed the coordination geometry around the uranyl center at pH 3 and 7.4. High affinity constants (log K ∼17) toward the uranyl ion were determined by displacement titration. A preliminary in vitro chelation study proves that bis-phosphonated pyridine ligands can remove uranium from calmodulin (CaM) at a low dose and in the short term, which supports further uranyl decorporation applications of these ligands.