Spectroscopic investigation on the affinity of SARS-CoV-2 spike protein to gold nano-particles

Colloid Interface Sci Commun. 2021 Jan:40:100356. doi: 10.1016/j.colcom.2020.100356. Epub 2020 Dec 26.

Abstract

The affinity of the SARS-CoV-2 spike protein (S protein) to gold nano-particles was examined through spectral shifts of SPR (Surface Plasmon Resonance) band. Gold nano-colloidal particles are sensitive to the conformational change of the protein adsorbed over the particles' surface. As the pH value was gradually lowered from approximately neutral pH to an acidic pH (ca. pH 2), all mixtures of S protein with the gold colloids ≥30 nm in diameter exhibited a drastic red-shift of the average SPR band peak at one pH value more than that observed for bare gold colloids. The surface coverage fraction (Θ) of S protein over the nano-particle's surface was extracted and all showed relatively small coverage values (i.e., Θ ~ 0.30). The SPR band peak shift was also examined as the pH values were hopped between pH ~ 3 and pH ~ 10 (pH hopping). As the pH values hopped, an alternation of the average SPR band peaks were observed. A significant amplitude of an alternation was especially observed for the mixture of S protein with gold ≥30 nm of gold size implying the reproduction of pH induced reversible protein folding. We hypothesize that the pH hopping scheme captured a reversible transition between folded or Down conformation (pH ≥ ~7) and unfolded or Up (pH ~ 3) conformation of RBD (receptor binding domain). The acidic condition may also dimerize the S protein through RBD. The Up conformation or dimerization of S protein are considered to be connected to the other gold nano particles forming gold nano-particle aggregates.

Keywords: Gold nano-colloidal particles; Protein folding; Reversible self-assembly; SARS-CoV-2; Spike protein.