High-throughput analysis of high-molecular weight glutenin subunits in 665 wheat genotypes using an optimized MALDI-TOF-MS method

3 Biotech. 2021 Feb;11(2):92. doi: 10.1007/s13205-020-02637-z. Epub 2021 Jan 24.

Abstract

Gluten protein composition determines the rheological characteristics of wheat dough and is influenced by variable alleles with distinct effects on processing properties. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we determined the high-molecular weight glutenin subunit (HMW-GS) composition of 665 wheat genotypes employed in breeding programs in South Korea. We identified 22 HMW-GS alleles, including 3 corresponding to the Glu-A1 locus, 14 to Glu-B1, and 5 to Glu-D1. The Glu-1 quality score, which is an important criterion for high-quality wheat development, was found to be 10 for 105/665 (15.79%) of the studied genotypes, and included the following combinations of HMW-GS: 2*, 7 + 8, 5 + 10; 2*, 17 + 18, 5 + 10; 1, 7 + 8, 5 + 10; and 1, 17 + 18, 5 + 10. To select wheat lines with the 1Bx7 overexpression (1Bx7OE) subunit, which is known to have a positive effect on wheat quality, we used a combination of MALDI-TOF-MS and published genotyping markers and identified 6 lines carrying 1Bx7OE out of the 217 showing a molecular weight of 83,400 Da, consistent with 1Bx7G2 and 1Bx7OE. This study demonstrates that the MALDI-TOF-MS method is fast, accurate, reliable, and effective in analyzing large numbers of wheat germplasms or breeding lines in a high-throughput manner.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-020-02637-z.

Keywords: HMW-GS; High-throughput analysis; MALDI-TOF–MS; Wheat.