Determination and Pharmacokinetic Profiles of Four Active Components From Scrophularia ningpoensis Hemsl. in Rats

Front Pharmacol. 2021 Jan 13:11:612534. doi: 10.3389/fphar.2020.612534. eCollection 2020.

Abstract

Acteoside, angoroside C, harpagoside, and cinnamic acid, which are the main bioactive ingredients of Scrophularia ningpoensis Hemsl., have wide clinical use with various biological effects. A new and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established with taxifolin as the internal standard (IS) in this study and was successfully used to study the pharmacokinetic profiles of four active components from S. ningpoensis Hemsl. in rats after sublingual intravenous administration. After protein precipitation with acetonitrile, the mobile phase (consisting of acetonitrile and 0.1% formic acid) was used to separate the analytes on an Acquity UPLC BEH C18 chromatography column (2.1 × 50 mm, 1.7 μm) under gradient elution. The precursor-to-product ion transitions of 623.4 → 161.3 m/z for acteoside, 783.5 → 175.0 m/z for angoroside C, 493.3 → 345.2 m/z for harpagoside and 147.2 → 103.4 m/z for cinnamic acid were monitored by mass spectrometry with negative electrospray ionization in the multiple reaction monitoring (MRM) mode. The concentration range of 10-1,000 ng/ml could be detected by this method with a lower limit of quantification (LLOQ) of 10 ng/ml for each analyte. The intra- and inter-day precision (RSD%) of the method ranged from 2.6 to 9.9% and 2.7-11.5%, respectively. Meanwhile, the accuracy (RE%) was -9.6-10.7% in this developed method. The mean recoveries of four active components from S. ningpoensis Hemsl. were more than 76.7% with negligible matrix effects. The four active components from S. ningpoensis Hemsl. were stable under multiple storage and process conditions. A new, sensitive and simple analytical method had been established and was successfully applied to the pharmacokinetic profiles of four active components from S. ningpoensis Hemsl. in rats after sublingual intravenous administration.

Keywords: UPLC-MS/MS; acteoside; angoroside C; cinnamic acid; harpagoside; pharmacokinetics.