p53 and Tumor Suppression: It Takes a Network

Trends Cell Biol. 2021 Apr;31(4):298-310. doi: 10.1016/j.tcb.2020.12.011. Epub 2021 Jan 28.

Abstract

The TP53 tumor suppressor is the most frequently mutated gene in human cancer. p53 suppresses tumorigenesis by transcriptionally regulating a network of target genes that play roles in various cellular processes. Though originally characterized as a critical regulator for responses to acute DNA damage (activation of apoptosis and cell cycle arrest), recent studies have highlighted new pathways and transcriptional targets downstream of p53 regulating genomic integrity, metabolism, redox biology, stemness, and non-cell autonomous signaling in tumor suppression. Here, we summarize our current understanding of p53-mediated tumor suppression, situating recent findings from mouse models and unbiased screens in the context of previous studies and arguing for the importance of the pleiotropic effects of the p53 transcriptional network in inhibiting cancer.

Keywords: cancer; mouse models; network; p53; transcription factor; tumor suppression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Apoptosis
  • Cell Cycle Checkpoints
  • DNA Damage / genetics
  • Humans
  • Mice
  • Neoplasms* / genetics
  • Tumor Suppressor Protein p53* / genetics

Substances

  • Tumor Suppressor Protein p53