Diagnostic accuracy of low-dose and ultra-low-dose CT in detection of chest pathology: a systematic review

Clin Imaging. 2021 Jun:74:139-148. doi: 10.1016/j.clinimag.2020.12.041. Epub 2021 Jan 6.

Abstract

Purpose: Studies have evaluated imaging modalities with a lower radiation dose than standard-dose CT (SD-CT) for chest examination. This systematic review aimed to summarize evidence on diagnostic accuracy of these modalities - low-dose and ultra-low-dose CT (LD- and ULD-CT) - for chest pathology.

Method: Ovid-MEDLINE, Ovid-EMBASE and the Cochrane Library were systematically searched April 29th-30th, 2019 and screened by two reviewers. Studies on diagnostic accuracy were included if they defined their index tests as 'LD-CT', 'Reduced-dose CT' or 'ULD-CT' and had SD-CT as reference standard. Risk of bias was evaluated on study level using the Quality Assessment of Diagnostic Accuracy Studies-2. A narrative synthesis was conducted to compare the diagnostic accuracy measurements.

Results: Of the 4257 studies identified, 18 were eligible for inclusion. SD-CT (3.17 ± 1.47 mSv) was used as reference standard in all studies to evaluate diagnostic accuracy of LD- (1.22 ± 0.34 mSv) and ULD-CT (0.22 ± 0.05 mSv), respectively. LD-CT had high sensitivities for detection of bronchiectasis (82-96%), honeycomb (75-100%), and varying sensitivities for nodules (63-99%) and ground glass opacities (GGO) (77-91%). ULD-CT had high sensitivities for GGO (93-100%), pneumothorax (100%), consolidations (90-100%), and varying sensitivities for nodules (60-100%) and emphysema (65-90%).

Conclusion: The included studies found LD-CT to have high diagnostic accuracy in detection of honeycombing and bronchiectasis and ULD-CT to have high diagnostic accuracy for pneumothorax, consolidations and GGO. Summarizing evidence on diagnostic accuracy of LD- and ULD-CT for other chest pathology was not possible due to varying outcome measures, lack of precision estimates and heterogeneous study design and methodology.

Keywords: Chest pathology; Diagnostic accuracy; Low-dose CT; Systematic review; Ultra-low-dose CT.

Publication types

  • Review
  • Systematic Review

MeSH terms

  • Humans
  • Lung Diseases*
  • Pulmonary Emphysema*
  • Radiation Dosage
  • Tomography, X-Ray Computed