Innovative membrane photobioreactor for sustainable CO2 capture and utilization

Chemosphere. 2021 Jun:273:129682. doi: 10.1016/j.chemosphere.2021.129682. Epub 2021 Jan 18.

Abstract

The rising of greenhouse-gas emissions (GHG), during the last 200 years, is associated to the well known global warming phenomena. One of the main sources of CO2-equivalent GHGs emissions are the environmental protection plants accounting for 1.57% of the global emissions and thus sustainable and effective technologies for their mitigation are strongly needed. The current paper presents and discusses the assessment of an innovative membrane photo-bioreactor (MPBR) whose aim was the promotion of CO2 capture from conveyed flows, such as those from wastewater treatment plants (WWTPs), landfill and composting plants, for production and energy valorisation of algal biomass. Chlorella vulgaris microalgae strain was selected as photosynthetic platform for the abovementioned purposes. The influence of various operating parameters has been explored, including the photosynthetic photon flux densities (PPFD) (60 and 120 μmol m-2 s-1), liquid/gas ratio (L/G = 5, 10 or 15) and CO2 concentration (5, 10 and 15%) in order to investigated their effects on carbon capture effectiveness and biomass production. The results demonstrated that the increasing of PPFD significantly enhanced the biomass production in terms of biomass productivity (P) and total dry weight (DW). The highest biomass concentration of 1.01 g L-1 was achieved at PPFD of 120 μmol m-2 s-1 with a L/G of 15. Under the aforementioned conditions, carbon dioxide removal efficiency (RE) reached values up to 80%. In addition, the novel MPBR equipped with an innovative self-forming dynamic membrane (SFDM) showed a simultaneous biomass harvesting rate of 41 g m-2 h-1.

Keywords: Biomass production; Carbon capture and utilization; Carbon dioxide; Membrane bioreactor; Microalgae; Photobioreactor.

MeSH terms

  • Biomass
  • Carbon Dioxide
  • Chlorella vulgaris*
  • Microalgae*
  • Photobioreactors

Substances

  • Carbon Dioxide