Three-dimensional-printed replica models of bone for experimentally decoupling trabecular bone properties contribution to ultrasound propagation parameters

J Acoust Soc Am. 2021 Jan;149(1):296. doi: 10.1121/10.0003048.

Abstract

A detailed investigation of the relationship between ultrasonic (US) properties and trabecular bone microstructure is difficult because of the great variability in the bone loss process. The aim of this work was twofold. First, to verify by compressive tests that the three-dimensional (3D)-printer is able to produce precisely and repeatedly "bone replica models" of different size and density. Following, replicas of the original specimens with two different polymers and thinned trabeculae models were used to investigate US properties (speed of sound, SOS, and backscatter coefficient), aiming to deconvolute the influence of material properties on ultrasound characteristics. The results revealed that matrix material properties influence only the magnitude of the backscatter coefficient, whereas the characteristic undulated patterns are related to the trabecular structure. Simulation of perforation and thinning of cancellous bone, associated with bone loss, showed that SOS and mechanical properties were reduced perfectly linearly with apparent density when structure deteriorated. The 3D-printed bone replicas have the potential to enable systematic investigations of the influence of structure on both acoustical and mechanical properties and evaluate changes caused by bone loss. The development of replicas from materials with properties close to those of bone will permit quantitative conclusions for trabecular bone.

Publication types

  • Research Support, Non-U.S. Gov't