Discovery and SAR studies of 3-amino-4-(phenylsulfonyl)tetrahydrothiophene 1,1-dioxides as non-electrophilic antioxidant response element (ARE) activators

Bioorg Chem. 2021 Mar:108:104614. doi: 10.1016/j.bioorg.2020.104614. Epub 2021 Jan 5.

Abstract

The transcription factor NRF2 controls resistance to oxidative insult and is thus a key therapeutic target for treating a number of disease states associated with oxidative stress and aging. We previously reported CBR-470-1, a bis-sulfone which activates NRF2 by increasing the levels of methylglyoxal, a metabolite that covalently modifies NRF2 repressor KEAP1. Here, we report the design, synthesis, and structure activity relationship of a series of bis-sulfones derived from this unexplored chemical template. We identify analogs with sub-micromolar potencies, 7f and 7g, as well as establish that efficacious NRF2 activation can be achieved by non-toxic analogs 7c, 7e, and 9, a key limitation with CBR-470-1. Further efforts to identify non-covalent NRF2 activators of this kind will likely provide new insight into revealing the role of central metabolism in cellular signaling.

Keywords: ARE activator; NRF2; PGK1 inhibitor; Reactive metabolites; Structure-activity relationship.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antioxidants / chemical synthesis
  • Antioxidants / chemistry
  • Antioxidants / pharmacology*
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Humans
  • Molecular Structure
  • Structure-Activity Relationship
  • Thiophenes / chemical synthesis
  • Thiophenes / chemistry
  • Thiophenes / pharmacology*

Substances

  • Antioxidants
  • Thiophenes