Occurrence of N-nitrosamines and their precursors in the middle and lower reaches of Yangtze River water

Environ Res. 2021 Apr:195:110673. doi: 10.1016/j.envres.2020.110673. Epub 2021 Jan 27.

Abstract

The presence of some types of N-nitrosamines in water bodies is of great concern worldwide due to their carcinogenic risks and harmful mutagenic effects on human health. In the present study, eight N-nitrosamines and their formation potentials (FPs) were primarily investigated in Yangtze River surface water to evaluate their spatial distribution, mass loads, and ecological risks. The results showed that of the eight N-nitrosamines investigated, NDMA (<1.5-17 ng/L), NDEA (<1.4-9.5 ng/L), NDPA (1.0 ng/L), NMOR (<1.0-1.3 ng/L), NPIP (<2.1-3.7 ng/L), and NDBA (<3.6-30 ng/L) were detected. The FPs of NDMA (<27-130 ng/L), NDEA (<0.9-2.3 ng/L), NDPA (<1.2-1.9 ng/L), NPYR (<1.4-2.9 ng/L), NMOR (<1.0 ng/L), and NDBA (<1.1-14 ng/L) were significantly identified. NDBA was predominantly observed in surface water, while NDMA was noticeably detected in chloraminated water samples. It was estimated that approximately 5.4 t/y of N-nitrosamines were carried by the Yangtze River to the East China Sea, whereas the input flux of N-nitrosamine precursors was estimated to be approximately 69.5 t/y. Spatial variations were observed due to the input of N-nitrosamines from the upstream dams and lakes. The origin of N-nitrosamine precursors was not associated with the presence of sediment in river water. NDEA could be introduced into river water by the discharge of wastewater. NDBA and its precursors could originate from industrial and aquaculture activities. NDMA and its precursors could result from both of the aforementioned sources. Moreover, the wastewater discharge from small cities, pH value, wastewater treatment ratio, and dilution could be the key factors that influence the occurrence of N-nitrosamines along the Yangtze River. More attention should be paid to the cancer risks posed by N-nitrosamines. The ecological risks posed by N-nitrosamines in the Yangtze River can be ignored.

Keywords: Ecological risk; Formation potential; Mass loads; N-nitrosamines; Yangtze river.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Humans
  • Nitrosamines*
  • Rivers
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Nitrosamines
  • Water Pollutants, Chemical
  • Water