Functional redundancy in local spatial scale microbial communities suggests stochastic processes at an urban wilderness preserve in Austin, TX, USA

FEMS Microbiol Lett. 2021 Feb 12;368(3):fnab010. doi: 10.1093/femsle/fnab010.

Abstract

Empirical evidence supports selection of soil microbial communities by edaphic properties across large spatial scales; however, less is known at smaller spatial scales. The goal of this research was to evaluate relationships between ecosystem characteristics and bacterial community structure/function at broad taxonomic resolutions in soils across small spatial scales. We employed 16S rRNA gene sequencing, community-level physiological profiling and soil chemical analysis to address this goal. We found weak relationships between gradients in soil characteristics and community structure/function. Specific operational taxonomic units did not respond to edaphic variation, but Acidobacteria, Bacteroidetes and Nitrospirae shifted their relative abundances. High metabolic diversity within the bacterial communities was observed despite general preference of Tween 40/80. Carbon metabolism patterns suggest dominance of functional specialists at our times of measurement. Pairwise comparison of carbon metabolism patterns indicates high levels of functional redundancy. Lastly, at broad taxonomic scales, community structure and function weakly covary with edaphic properties. This evidence suggests that stochasticity or unmeasured environmental gradients may be influential in bacterial community assembly in soils at small spatial scales.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • Carbon / metabolism*
  • Microbiota / genetics
  • Microbiota / physiology*
  • RNA, Ribosomal, 16S / genetics
  • Soil / chemistry
  • Soil Microbiology*
  • Texas
  • Wilderness

Substances

  • RNA, Ribosomal, 16S
  • Soil
  • Carbon