Real-Time Multiobject Tracking Based on Multiway Concurrency

Sensors (Basel). 2021 Jan 20;21(3):685. doi: 10.3390/s21030685.

Abstract

This paper explored a pragmatic approach to research the real-time performance of a multiway concurrent multiobject tracking (MOT) system. At present, most research has focused on the tracking of single-image sequences, but in practical applications, multiway video streams need to be processed in parallel by MOT systems. There have been few studies on the real-time performance of multiway concurrent MOT systems. In this paper, we proposed a new MOT framework to solve multiway concurrency scenario based on a tracking-by-detection (TBD) model. The new framework mainly focuses on concurrency and real-time based on limited computing and storage resources, while considering the algorithm performance. For the former, three aspects were studied: (1) Expanded width and depth of tracking-by-detection model. In terms of width, the MOT system can support the process of multiway video sequence at the same time; in terms of depth, image collectors and bounding box collectors were introduced to support batch processing. (2) Considering the real-time performance and multiway concurrency ability, we proposed one kind of real-time MOT algorithm based on directly driven detection. (3) Optimization of system level-we also utilized the inference optimization features of NVIDIA TensorRT to accelerate the deep neural network (DNN) in the tracking algorithm. To trade off the performance of the algorithm, a negative sample (false detection sample) filter was designed to ensure tracking accuracy. Meanwhile, the factors that affect the system real-time performance and concurrency were studied. The experiment results showed that our method has a good performance in processing multiple concurrent real-time video streams.

Keywords: concurrency; multiobject tracking; multiway; real-time; single-object tracking; tracking-by-detection.