How to improve the muscle synergy analysis methodology?

Eur J Appl Physiol. 2021 Apr;121(4):1009-1025. doi: 10.1007/s00421-021-04604-9. Epub 2021 Jan 26.

Abstract

Muscle synergy analysis is increasingly used in domains such as neurosciences, robotics, rehabilitation or sport sciences to analyze and better understand motor coordination. The analysis uses dimensionality reduction techniques to identify regularities in spatial, temporal or spatio-temporal patterns of multiple muscle activation. Recent studies have pointed out variability in outcomes associated with the different methodological options available and there was a need to clarify several aspects of the analysis methodology. While synergy analysis appears to be a robust technique, it remain a statistical tool and is, therefore, sensitive to the amount and quality of input data (EMGs). In particular, attention should be paid to EMG amplitude normalization, baseline noise removal or EMG filtering which may diminish or increase the signal-to-noise ratio of the EMG signal and could have major effects on synergy estimates. In order to robustly identify synergies, experiments should be performed so that the groups of muscles that would potentially form a synergy are activated with a sufficient level of activity, ensuring that the synergy subspace is fully explored. The concurrent use of various synergy formulations-spatial, temporal and spatio-temporal synergies- should be encouraged. The number of synergies represents either the dimension of the spatial structure or the number of independent temporal patterns, and we observed that these two aspects are often mixed in the analysis. To select a number, criteria based on noise estimates, reliability of analysis results, or functional outcomes of the synergies provide interesting substitutes to criteria solely based on variance thresholds.

Keywords: EMG processing; Matrix factorization; Model selection; Motor module; Primitives.

Publication types

  • Review

MeSH terms

  • Algorithms
  • Electromyography / methods*
  • Electromyography / standards
  • Humans
  • Muscle, Skeletal / physiology*