Dynamic Regulation of Lithium Dendrite Growth with Electromechanical Coupling Effect of Soft BaTiO3 Ceramic Nanofiber Films

ACS Nano. 2021 Feb 23;15(2):3161-3170. doi: 10.1021/acsnano.0c09745. Epub 2021 Jan 26.

Abstract

Lithium (Li) metal batteries (LMBs) offer great opportunity for developing high-energy density energy-storage-systems, but the anodes suffer a severe problem of dendrite growth that hinders the practical applications of LMBs. Here, we report a soft BaTiO3 ceramic nanofiber film with excellent ferroelectricity and piezoelectricity that enables one to transverse the dense deposition of Li metal. During Li plating, the strong ferroelectricity reduces the Li-ion concentration gradient near the anode and thus facilitating their uniform deposition. Once squeezed by these Li deposits, the BaTiO3 film generates instantaneous piezo-effect to dynamically change the subsequent Li deposition from vertical to lateral. As a result, Li-Cu cells exhibit reversible plating-stripping processes for over 200 cycles with a high Coulombic efficiency of >98.3%. When pairing with high-voltage LiNi0.8Co0.15Al0.05O2 cathodes, the LMBs can retain >80% capacity in 300 cycles without forming dendrites even under challenging conditions including a high cathode loading of 7.2 mg/cm2, a lean electrolyte amount of 7 μL/mg, and high current rates. The findings point to a promising electromechanical coupling strategy to dynamically adjust dendrite growth for designing Li metal anodes.

Keywords: BaTiO3 nanofiber film; Li metal batteries; dynamically regulation; electromechanical coupling effect; instantaneous piezo-effect.