Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation

Gut Liver. 2021 Sep 15;15(5):771-781. doi: 10.5009/gnl20210.

Abstract

Background/aims: Interleukin-22 (IL-22) is an important cytokine maintaining homeostasis at barrier surfaces. In this study, the role of IL-22 in acute pancreatitis-associated intestinal injury was further explored.

Methods: Severe acute pancreatitis (SAP) was induced by administration of L-arginine in Balb/c mice at different time gradients. Histopathological examinations were made in both the pancreas and small intestine. Furthermore, recombinant murine IL-22 (rIL-22) was administrated to L-arginine-induced SAP mice by intraperitoneal injection. The mRNA levels of IL-22R1, Reg-IIIβ, Reg-IIIγ, Bcl-2, and Bcl-xL were detected in the small intestine by real-time polymerase chain reaction, and protein levels of total and phosphorylated STAT3 were assessed via Western blot.

Results: Compared with normal control group, 72 hours of L-arginine exposure induced the most characteristic histopathological changes of SAP, evidenced by pathological changes and serum amylase levels. Meanwhile, significant pancreatitis-associated intestinal mucosa injury was also observed. The gene expression levels of antimicrobial proteins Reg-IIIβ, Reg-IIIγ and anti-apoptosis proteins Bcl-2, Bcl-xL were downregulated in small intestine. Furthermore, Larginine- induced SAP was attenuated by rIL-22 treatment. Importantly, pancreatitis-associated intestinal mucosa injury was also ameliorated, reflected by improved pathological changes and significant increase in gene expression levels of Reg-IIIβ, Reg-IIIγ, Bcl-2 and Bcl-xL. Consistently, serum amylase levels and mortality were decreased in mice treated with rIL-22. Mechanistically, the upregulated expressions of these protective genes were achieved by activating STAT3.

Conclusions: Exogenous rIL-22 attenuates L-arginine-induced acute pancreatitis and intestinal mucosa injury in mice, via activating STAT3 signaling pathway and enhancing the expression of antimicrobial peptides and antiapoptotic genes.

Keywords: Interleukin-22; Intestinal mucosa; Pancreatitis; STAT3.

MeSH terms

  • Acute Disease
  • Animals
  • Interleukin-22
  • Interleukins / pharmacology*
  • Intestinal Mucosa
  • Mice
  • Pancreatitis* / chemically induced
  • Pancreatitis* / drug therapy
  • STAT3 Transcription Factor / metabolism

Substances

  • Interleukins
  • STAT3 Transcription Factor
  • Stat3 protein, mouse