Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2

J Infect Public Health. 2021 Feb;14(2):227-237. doi: 10.1016/j.jiph.2020.12.014. Epub 2020 Dec 21.

Abstract

Coronavirus disease 2019 (COVID-19) is a fatal infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The virus infection is initiated upon recognition and binding of the spike (S) protein receptor-binding domain (RBD) to the host cell surface receptor, angiotensin-converting enzyme 2 (ACE2). Blocking the interaction between S protein and ACE2 receptor is a novel approach to prevent the viral entry into the host cell. The present study is aimed at the identification of small molecules which can disrupt the interaction between SARS-CoV-2 S protein and human ACE2 receptor by binding to the interface region. A chemical library consisting of 1,36,191 molecules were screened for drug-like compounds based on Lipinski's rule of five, Verber's rule and in silico toxicity parameters. The filtered drug-like molecules were next subjected to molecular docking in the interface region of RBD. The best three hits viz; ZINC64023823, ZINC33039472 and ZINC00991597 were further taken for molecular dynamics (MD) simulation studies and binding free energy evaluations using Molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and Molecular mechanics-Generalized Born surface area (MM-GBSA). The protein-ligand complexes showed stable trajectories throughout the simulation time. ZINC33039472 exhibited binding free energy value lower as compared to the control (emodin) with a higher contribution by gas-phase energy and van der Waals energy to the total binding free energy. Thus, ZINC33039472 is identified to be a promising interfacial binding molecule which can inhibit the interaction between the viral S protein and human ACE2 receptor which would consequently help in the management of the disease.

Keywords: ACE2; Angiotensin-converting enzyme 2; COVID-19; Molecular docking; Molecular dynamics simulation; Protein–protein interface; RBD; Receptor-binding domain; SARS-CoV-2; Spike protein.

MeSH terms

  • Angiotensin-Converting Enzyme 2 / chemistry*
  • Antiviral Agents / pharmacology*
  • COVID-19
  • Humans
  • Molecular Docking Simulation
  • Protein Binding
  • Protein Domains
  • SARS-CoV-2 / drug effects*
  • Spike Glycoprotein, Coronavirus / antagonists & inhibitors*
  • Virus Internalization / drug effects*

Substances

  • Antiviral Agents
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2
  • ACE2 protein, human
  • Angiotensin-Converting Enzyme 2