Mechanistic Investigations of Growth of Anisotropic Nanostructures in Reverse Micelles

ACS Omega. 2021 Jan 4;6(2):1007-1029. doi: 10.1021/acsomega.0c04033. eCollection 2021 Jan 19.

Abstract

Tailoring the characteristics of anisotropic nanostructures like size, morphology, aspect ratio, and size dispersity is of extreme importance due to the unique and tunable properties including catalytic, optical, photocatalytic, magnetic, photochemical, electrochemical, photoelectrochemical, and several other physical properties. The reverse microemulsion (RM) method offers a useful soft-template and low-temperature procedure that, by variation of experimental conditions and nature of reagents, has proved to be extremely versatile in synthesis of nanostructures with tailored properties. Although many reports of synthesis of nanostructures by the RM method exist in the literature, most of the research studies carried out still follow the "hit and trial" method where the synthesis conditions, reagents, and other factors are varied and the resulting characteristics of the obtained nanostructures are justified on the basis of existing physical chemistry principles. Mechanistic investigations are scarce to generate a set of empirical rules that would aid in preplanning the RM-based synthesis of nanostructures with desired characteristics as well as make the process viable on an industrial scale. A consolidation of such research data available in the literature is essential for providing future directions in the field. In this perspective, we analyze the literature reports that have investigated the mechanistic aspects of growth of anisotropic nanostructures using the RM method and distil the essence of the present understanding at the nanoscale timescale using techniques like FCS and ultrafast spectroscopy in addition to routine techniques like DLS, fluorescence, TEM, etc.

Publication types

  • Review