ABCG: a new fold of ABC exporters and a whole new bag of riddles!

Adv Protein Chem Struct Biol. 2021:123:163-191. doi: 10.1016/bs.apcsb.2020.09.006. Epub 2020 Dec 4.

Abstract

ATP-binding cassette (ABC) superfamily comprises membrane transporters that power the active transport of substrates across biological membranes. These proteins harness the energy of nucleotide binding and hydrolysis to fuel substrate translocation via an alternating-access mechanism. The primary structural blueprint is relatively conserved in all ABC transporters. A transport-competent ABC transporter is essentially made up of two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). While the NBDs are conserved in their primary sequence and form at their interface two nucleotide-binding sites (NBSs) for ATP binding and hydrolysis, the TMDs are variable among different families and form the translocation channel. Transporters catalyzing the efflux of substrates from the cells are called exporters. In humans, they range from A to G subfamilies, with the B, C and G subfamilies being involved in chemoresistance. The recently elucidated structures of ABCG5/G8 followed by those of ABCG2 highlighted a novel structural fold that triggered extensive research. Notably, suppressor genetics in the orthologous yeast Pleiotropic Drug Resistance (PDR) subfamily proteins have pointed to a crosstalk between TMDs and NBDs modulating substrate export. Considering the structural information provided by their neighbors from the G subfamily, these studies provide mechanistic keys and posit a functional role for the non-hydrolytic NBS found in several ABC exporters. The present chapter provides an overview of structural and functional aspects of ABCG proteins with a special emphasis on the yeast PDR systems.

Keywords: ABC transporter; ABCG family; Non-catalytic NBS; Nucleotide-binding domains; PDR subfamily; Transmembrane domains.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism*
  • Animals
  • Binding Sites
  • Cell Membrane / genetics
  • Cell Membrane / metabolism*
  • Humans
  • Models, Molecular*

Substances

  • ATP-Binding Cassette Transporters