An update on the roles of immune system-derived microRNAs in cardiovascular diseases

Cardiovasc Res. 2021 Nov 1;117(12):2434-2449. doi: 10.1093/cvr/cvab007.

Abstract

Cardiovascular diseases (CVD) are a leading cause of human death worldwide. Over the past two decades, the emerging field of cardioimmunology has demonstrated how cells of the immune system play vital roles in the pathogenesis of CVD. MicroRNAs (miRNAs) are critical regulators of cellular identity and function. Cell-intrinsic, as well as cell-extrinsic, roles of immune and inflammatory cell-derived miRNAs have been, and continue to be, extensively studied. Several 'immuno-miRNAs' appear to be specifically expressed or demonstrate greatly enriched expression within leucocytes. Identification of miRNAs as critical regulators of immune system signalling pathways has posed the question of whether and how targeting these molecules therapeutically, may afford opportunities for disease treatment and/or management. As the field of cardioimmunology rapidly continues to advance, this review discusses findings from recent human and murine studies which contribute to our understanding of how leucocytes of innate and adaptive immunity are regulated-and may also regulate other cell types, via the actions of the miRNAs they express, in the context of CVD. Finally, we focus on available information regarding miRNA regulation of regulatory T cells and argue that targeted manipulation of miRNA regulated pathways in these cells may hold therapeutic promise for the treatment of CVD and associated risk factors.

Keywords: Cardioimmunology; Cardiovascular disease; Heart; Immunology; MicroRNA; TREGS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptive Immunity*
  • Animals
  • Cardiovascular Diseases / genetics
  • Cardiovascular Diseases / immunology
  • Cardiovascular Diseases / metabolism*
  • Cardiovascular Diseases / therapy
  • Cardiovascular System / immunology
  • Cardiovascular System / metabolism*
  • Gene Expression Regulation
  • Humans
  • Immune System / immunology
  • Immune System / metabolism*
  • Immunity, Innate*
  • Immunotherapy
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Signal Transduction

Substances

  • MicroRNAs