Use of Intraoperative Computed Tomography Improves Outcome of Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Single-Center Retrospective Cohort Study

World Neurosurg. 2021 Apr:148:e572-e580. doi: 10.1016/j.wneu.2021.01.041. Epub 2021 Jan 20.

Abstract

Objective: To provide data about surgical workflow, accuracy, complications, radiation exposure, and learning curve effect in patients who underwent minimally invasive (MIS) transforaminal lumbar interbody fusion with navigation coupled with mobile intraoperative computed tomography.

Methods: A retrospective analysis was performed of data from consecutive patients who underwent single- or double-level MIS transforaminal lumbar interbody fusion at a single institution; mobile intraoperative computed tomography combined with a navigation system was used as the sole intraoperative imaging method to place pedicular screws; decompression and interbody fusion were performed through a 22-mm tubular retractor. Clinical data, perioperative complications, accuracy of pedicular screw placement, and radiation exposure were analyzed. A learning curve effect on surgical time and accuracy was assessed.

Results: A total of 408 screws in 100 patients were analyzed. In all cases, spinal navigation allowed for identification of pedicular trajectories and greatly facilitated nerve root decompression through the MIS approach. Overall accuracy according to Heary classification was 95.3%. Nineteen screws (4.7%) presented a minor lateral breach (<2 mm), not clinically significant. Surgical time, blood loss, and patient radiation exposure compared favorably with reported values from other series using three-dimensional navigation. A learning curve effect on surgical time, but not on screw accuracy, was identified.

Conclusions: MIS transforaminal lumbar interbody fusion can now be performed without any radiation exposure to the surgeon and operating room staff, with almost absolute accuracy during screw positioning and tubular decompression. A learning curve effect on surgical time, but not on overall screw accuracy, may be expected.

Keywords: Intraoperative computed tomography; Lumbar fusion; MIS TLIF; Minimally invasive; Navigation; Percutaneous instrumentation; Spine.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Blood Loss, Surgical
  • Cohort Studies
  • Combined Modality Therapy
  • Decompression, Surgical
  • Female
  • Humans
  • Imaging, Three-Dimensional
  • Learning Curve
  • Lumbar Vertebrae / surgery*
  • Male
  • Middle Aged
  • Minimally Invasive Surgical Procedures / methods*
  • Monitoring, Intraoperative*
  • Operative Time
  • Pedicle Screws
  • Retrospective Studies
  • Spinal Fusion / methods*
  • Spinal Nerve Roots / surgery
  • Tomography, X-Ray Computed / methods*
  • Treatment Outcome