Spin-Induced Black Hole Scalarization in Einstein-Scalar-Gauss-Bonnet Theory

Phys Rev Lett. 2021 Jan 8;126(1):011104. doi: 10.1103/PhysRevLett.126.011104.

Abstract

We construct black hole solutions with spin-induced scalarization in a class of models where a scalar field is quadratically coupled to the topological Gauss-Bonnet term. Starting from the tachyonically unstable Kerr solutions, we obtain families of scalarized black holes such that the scalar field has either even or odd parity, and we investigate their domain of existence. The scalarized black holes can violate the Kerr rotation bound. We identify "critical" families of scalarized black hole solutions such that the expansion of the metric functions and of the scalar field at the horizon no longer allows for real coefficients. For the quadratic coupling considered here, solutions with spin-induced scalarization are entropically favored over Kerr solutions with the same mass and angular momentum.