Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding

Viruses. 2021 Jan 19;13(1):142. doi: 10.3390/v13010142.

Abstract

The first step of cellular entry for the human immunodeficiency virus type-1 (HIV-1) occurs through the binding of its envelope protein (Env) with the plasma membrane receptor CD4 and co-receptor CCR5 or CXCR4 on susceptible cells, primarily CD4+ T cells and macrophages. Although there is considerable knowledge of the molecular interactions between Env and host cell receptors that lead to successful fusion, the precise way in which HIV-1 receptors redistribute to sites of virus binding at the nanoscale remains unknown. Here, we quantitatively examine changes in the nanoscale organisation of CD4 on the surface of CD4+ T cells following HIV-1 binding. Using single-molecule super-resolution imaging, we show that CD4 molecules are distributed mostly as either individual molecules or small clusters of up to 4 molecules. Following virus binding, we observe a local 3-to-10-fold increase in cluster diameter and molecule number for virus-associated CD4 clusters. Moreover, a similar but smaller magnitude reorganisation of CD4 was also observed with recombinant gp120. For one of the first times, our results quantify the nanoscale CD4 reorganisation triggered by HIV-1 on host CD4+ T cells. Our quantitative approach provides a robust methodology for characterising the nanoscale organisation of plasma membrane receptors in general with the potential to link spatial organisation to function.

Keywords: CD4; HIV-1 entry; STORM; modelling; nanoscale cluster; quantitative analysis; super-resolution microscopy; viral receptor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Antibodies, Monoclonal
  • CD4 Antigens / metabolism*
  • Cell Line
  • Cell Membrane / metabolism*
  • Cell Membrane / virology*
  • Data Interpretation, Statistical
  • HIV Envelope Protein gp120 / metabolism
  • HIV-1 / physiology*
  • Host-Pathogen Interactions
  • Humans
  • Image Processing, Computer-Assisted
  • Protein Binding
  • Receptors, CCR5 / metabolism
  • Receptors, HIV / metabolism
  • Single Molecule Imaging / methods*
  • T-Lymphocytes / metabolism*
  • T-Lymphocytes / virology*
  • Virus Attachment*

Substances

  • Antibodies, Monoclonal
  • CD4 Antigens
  • HIV Envelope Protein gp120
  • Receptors, CCR5
  • Receptors, HIV