Characterization of a Novel Laccase LAC-Yang1 from White-Rot Fungus Pleurotus ostreatus Strain Yang1 with a Strong Ability to Degrade and Detoxify Chlorophenols

Molecules. 2021 Jan 18;26(2):473. doi: 10.3390/molecules26020473.

Abstract

In this study, a laccase LAC-Yang1 was successfully purified from a white-rot fungus strain Pleurotus ostreatus strain yang1 with high laccase activity. The enzymatic properties of LAC-Yang1 and its ability to degrade and detoxify chlorophenols such as 2,6-dichlorophenol and 2,3,6-trichlorophenol were systematically studied. LAC-Yang1 showed a strong tolerance to extremely acidic conditions and strong stability under strong alkaline conditions (pH 9-12). LAC-Yang1 also exhibited a strong tolerance to different inhibitors (EDTA, SDS), metal ions (Mn2+, Cu2+, Mg2+, Na+, K+, Zn2+, Al3+, Co2+, and metal ion mixtures), and organic solvents (glycerol, propylene glycol). LAC-Yang1 showed good stability in the presence of Mg2+, Mn2+, glycerol, and ethylene glycol. Our results reveal the strong degradation ability of this laccase for high concentrations of chlorophenols (especially 2,6-dichlorophenol) and chlorophenol mixtures (2,6-dichlorophenol + 2,3,6-trichlorophenol). LAC-Yang1 displayed a strong tolerance toward a variety of metal ions (Na2+, Zn2+, Mn2+, Mg2+, K+ and metal ion mixtures) and organic solvents (glycerol, ethylene glycol) in its degradation of 2,6-dichlorophenol and 2,3,6-trichlorophenol. The phytotoxicity of 2,6-dichlorophenol treated by LAC-Yang1 was significantly reduced or eliminated. LAC-Yang1 demonstrated a good detoxification effect on 2,6-dichlorophenol while degrading this compound. In conclusion, LAC-Yang1 purified from Pleurotus ostreatus has great application value and potential in environmental biotechnology, especially the efficient degradation and detoxification of chlorophenols.

Keywords: chlorophenol; degradation; detoxification; enzymatic properties; fungi; laccase.

MeSH terms

  • Biodegradation, Environmental*
  • Chlorophenols / chemistry*
  • Chlorophenols / metabolism*
  • Environmental Pollutants / metabolism*
  • Laccase / metabolism*
  • Pleurotus / enzymology*
  • Pleurotus / growth & development

Substances

  • Chlorophenols
  • Environmental Pollutants
  • Laccase