Dendronized Gold Nanoparticles as Carriers for gp160 (HIV-1) Peptides: Biophysical Insight into Complex Formation

Langmuir. 2021 Feb 2;37(4):1542-1550. doi: 10.1021/acs.langmuir.0c03159. Epub 2021 Jan 21.

Abstract

The unavailability of effective and safe human immunodeficiency virus (HIV) vaccines incites several approaches for development of the efficient antigen/adjuvant vaccination composite. In this study, three different dendronized gold nanoparticles (AuNPs 13-15) were investigated for a complexation ability with gp160 synthetic peptides derived from an HIV envelope. It has been shown that HIV peptides interacted with nanoparticles as evident from the changes in their secondary structures, restricted the mobility of the attached fluorescence dye, and enhanced peptide helicity confirmed by the fluorescence polarization and circular dichroism results. Transmission electron microscopy visualized complexes as cloud-like structures with attached nanoparticles. AuNP 13-15 nanoparticles bind negatively charged peptides depending on the number of functional groups; the fastest saturation and peptide retardation were observed for the most dendronized nanoparticle as indicated from dynamic light scattering, laser Doppler velocimetry, and agarose gel electrophoresis experiments. Dendronized gold nanoparticles can be considered one of the potential HIV peptide-based vaccination platforms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gold
  • HIV Envelope Protein gp160
  • HIV-1*
  • Humans
  • Metal Nanoparticles*
  • Microscopy, Electron, Transmission
  • Peptides

Substances

  • HIV Envelope Protein gp160
  • Peptides
  • gp160 protein, Human immunodeficiency virus 1
  • gp160 protein, Human immunodeficiency virus 2
  • Gold