Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems

Mol Cell. 2021 Mar 4;81(5):1100-1115.e5. doi: 10.1016/j.molcel.2020.12.033. Epub 2021 Jan 19.

Abstract

Bacteria and archaea apply CRISPR-Cas surveillance complexes to defend against foreign invaders. These invading genetic elements are captured and integrated into the CRISPR array as spacer elements, guiding sequence-specific DNA/RNA targeting and cleavage. Recently, in vivo studies have shown that target RNAs with extended complementarity with repeat sequences flanking the target element (tag:anti-tag pairing) can dramatically reduce RNA cleavage by the type VI-A Cas13a system. Here, we report the cryo-EM structure of Leptotrichia shahii LshCas13acrRNA in complex with target RNA harboring tag:anti-tag pairing complementarity, with the observed conformational changes providing a molecular explanation for inactivation of the composite HEPN domain cleavage activity. These structural insights, together with in vitro biochemical and in vivo cell-based assays on key mutants, define the molecular principles underlying Cas13a's capacity to target and discriminate between self and non-self RNA targets. Our studies illuminate approaches to regulate Cas13a's cleavage activity, thereby influencing Cas13a-mediated biotechnological applications.

Keywords: CRISPR-Cas; Cas13; RNA cleavage; cryo-EM structure; inhibition mechanism; target discrimination.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Base Pairing
  • Base Sequence
  • Binding Sites
  • CRISPR-Associated Proteins / chemistry*
  • CRISPR-Associated Proteins / genetics
  • CRISPR-Associated Proteins / metabolism
  • CRISPR-Cas Systems*
  • Cloning, Molecular
  • Cryoelectron Microscopy
  • Endodeoxyribonucleases / chemistry*
  • Endodeoxyribonucleases / genetics
  • Endodeoxyribonucleases / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Genetic Vectors / chemistry
  • Genetic Vectors / metabolism
  • Leptotrichia / genetics*
  • Leptotrichia / metabolism
  • Models, Molecular
  • Mutation
  • Nucleic Acid Conformation
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Interaction Domains and Motifs
  • RNA Cleavage
  • RNA, Guide, CRISPR-Cas Systems / chemistry*
  • RNA, Guide, CRISPR-Cas Systems / genetics
  • RNA, Guide, CRISPR-Cas Systems / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • CRISPR-Associated Proteins
  • RNA, Guide, CRISPR-Cas Systems
  • Recombinant Proteins
  • Endodeoxyribonucleases

Supplementary concepts

  • Leptotrichia shahii