Fused Aromatic Network with Exceptionally High Carrier Mobility

Adv Mater. 2021 Mar;33(9):e2004707. doi: 10.1002/adma.202004707. Epub 2021 Jan 20.

Abstract

Recently, studies of 2D organic layered materials with unique electronic properties have generated considerable interest in the research community. However, the development of organic materials with functional electrical transport properties is still needed. Here, a 2D fused aromatic network (FAN) structure with a C5 N basal plane stoichiometry is designed and synthesized, and thin films are cast from C5 N solution onto silicon dioxide substrates. Then field-effect transistors are fabricated using C5 N thin flakes as the active layer in a bottom-gate top-contact configuration to characterize their electrical properties. The C5 N thin flakes, isolated by polydimethylsiloxane stamping, exhibit ambipolar charge transport and extraordinarily high electron (996 cm2 V-1 s-1 ) and hole (501 cm2 V-1 s-1 ) mobilities, surpassing the performance of most pristine organic materials without doping. These results demonstrate their vast potential for applications in thin-film optoelectronic devices.

Keywords: C5N; carrier mobility; covalent organic frameworks; field-effect transistors; fused aromatic network.