Metalloradical Cations and Dications Based on Divinyldiphosphene and Divinyldiarsene Ligands

Chemistry. 2021 Mar 26;27(18):5803-5809. doi: 10.1002/chem.202100213. Epub 2021 Mar 3.

Abstract

Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3-E)GaCl4 [(3-E).+ = [{(IPr)C(Ph)E}2 Fe(CO)3 ].+ , E = P or As; IPr = C{(NDipp)CH}2 , Dipp = 2,6-iPr2 C6 H3 ] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1-E) with Fe2 (CO)9 affords [{(IPr)C(Ph)E}2 Fe(CO)3 ] (2-E), in which 1-E binds to the Fe atom in an allylic (η3 -EECvinyl ) fashion and functions as a 4e donor ligand. Complexes 2-E undergo 1e oxidation with GaCl3 to yield (3-E)GaCl4 . Spin density analysis revealed that the unpaired electron in (3-E).+ is mainly located on the Fe (52-64 %) and vinylic C (30-36 %) atoms. Further 1e oxidation of (3-E)GaCl4 leads to unprecedented η3 -EECvinyl to η3 -ECvinyl CPh coordination shuttling to form the dications (4-E)(GaCl4 )2 .

Keywords: arsenic; coordination modes; iron; phosphorus; radical ions.