Spectroscopic Insight into Efficient and Stable Hole Transfer at the Perovskite/Spiro-OMeTAD Interface with Alternative Additives

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5752-5761. doi: 10.1021/acsami.0c19111. Epub 2021 Jan 20.

Abstract

A stable and efficient carrier transfer is a prerequisite for high-performance perovskite solar cells. With optimized additives, a significantly improved charge carrier transfer can be achieved at the interface of perovskite/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,90-spirobifluorene (Spiro-OMeTAD) with significantly boosted photostability. Using time-dependent spectroscopic techniques, we investigated charge carrier and mobile-ion dynamics at the perovskite/Spiro-OMeTAD interface, where the Spiro-OMeTAD contains different bis(trifluoromethanesulfonyl)imide (TFSI) salts additives (Li-TFSI, Mg-TFSI2, Ca-TFSI2). The pristine response and the dynamic changes under continuous illuminations are presented, which is correlated to the different behaviors of mobile-ion accumulations at the perovskite/Spiro interface and ascribed to the improved hole mobilities in Spiro-OMeTAD, ultimately contributing to the favorable behaviors in solar cells. It is demonstrated that the hole mobility and conductivity of hole transport layers play an important role in suppressing mobile-ion accumulation at the interfaces of solar cells. With the engineering of mixed-cation mixed-halide perovskite, optimal engineering of additives in hole transport materials is an efficient strategy. Therefore, it should be emphasized for accelerating perovskite photovoltaic commercialization.

Keywords: charge transfer; hole mobility; hole transport layer; mobile ions; perovskite solar cells; photoluminescence; time-resolved spectroscopy.