Beyond horizontal gene transfer: the role of plasmids in bacterial evolution

Nat Rev Microbiol. 2021 Jun;19(6):347-359. doi: 10.1038/s41579-020-00497-1. Epub 2021 Jan 19.

Abstract

Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacteria / genetics*
  • Biological Evolution*
  • Gene Transfer, Horizontal*
  • Genetic Variation
  • Genome, Bacterial*
  • Plasmids / physiology*