Investigation and Optimization of the SLM and WEDM Processes' Parameters for the AlSi10Mg-Sintered Part

Materials (Basel). 2021 Jan 15;14(2):410. doi: 10.3390/ma14020410.

Abstract

Presented study concerns the issue of processing the AlSi10Mg aluminum alloy with a use of WEDM technology. Two types of samples tested during the experiment were previously produced in SLM and in casting processes. The aim of the research was to determine the dependence of the input parameters of SLM (laser scanning speed) and WEDM (current amplitude) processes on the performance of the WEDM process as well as on the roughness of the cut surfaces. The experiment was carried out on a specially prepared test stand, and the results' analysis was carried out using the ANOVA (analysis of variance). A strong influence of the WEDM current on the process speed and on the Ra and Rz roughness parameters of the produced samples was found. The effect of SLM laser scanning speed was not so strong, but it tended to be uniform. On the other hand, the influence of the tested parameters on the WEDM process energy turned out to be insignificant and irregular. It was also found that for the WEDM process a sample made in SLM technology with relatively high laser scanning speed may be a better choice than the cast one. A case study was carried out to optimize the parameters of the tested processes.

Keywords: AlSi10Mg alloy; Wire Electrical Discharge Machining; additive manufacturing; aluminum alloy; difficult-to-cut material; selective laser melting.