Gas Sensor Based on Surface Enhanced Raman Scattering

Materials (Basel). 2021 Jan 14;14(2):388. doi: 10.3390/ma14020388.

Abstract

In order to address problems of safety and identification in gas detection, an optical detection method based on surface enhanced Raman scattering (SERS) was studied to detect ethanol vapor. A SERS device of silver nanoparticles modified polyvinylpyrrolidone (PVP) was realized by freeze-drying method. This SERS device was placed in a micro transparent cavity in order to inject ethanol vapor of 4% and obtain Raman signals by confocal Raman spectrometer. We compared different types of SERS devices and found that the modification of polyvinylpyrrolidone improves adsorption of ethanol molecules on surfaces of silver nanoparticle, and finally we provide the mechanism by theory and experiment. Finite Difference Time Domain(FDTD) simulation shows that single layer close-packed Ag nanoparticles have strong local electric field in a wide spectral range. In this study, we provide a case for safety and fingerprint recognition of ethanol vapor at room temperature and atmospheric pressure.

Keywords: FDTD simulation; PVP modification; ethanol vapor; silver nanoparticles; surface enhanced Raman scattering.