Unraveling the Formation Mechanism of a Hybrid Zr-Based Chemical Conversion Coating with Organic and Copper Compounds for Corrosion Inhibition

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5518-5528. doi: 10.1021/acsami.0c19203. Epub 2021 Jan 19.

Abstract

Environmentally friendly chromate-free, zirconium (Zr)-based conversion coating is a promising green technology for corrosion protection. Additives in the surface treatment provide critical functionalities and performance improvements; however, mechanistic understanding as to how the additives influence the coatings remains unclear. In this study, a new organic-inorganic hybrid Zr-based conversion coating combines copper (Cu) compounds and polyamidoamine (PAMAM), taking advantage of the complementary nature of organic and inorganic additives. A multimodal approach combining electron and X-ray characterization is applied to study the interaction of Cu2+ and PAMAM and the resulting impacts on coating formation. Adding PAMAM changed the surface morphology, thickness, distribution of Cu in the clusters, and void formation of the coatings. High PAMAM (100-200 ppm) leads to little conversion coating formation, and low PAMAM (0-25 ppm) shows voids formation under the coatings. Moreover, PAMAM incorporates in the coating in the form of a PAMAM-Cu complex with a higher concentration toward the surface, providing an organic layer at the surface of the coating. X-ray absorption near-edge structure (XANES) spectroscopy shows the difference between the conventional and the hybrid coating treatments in an alkaline solution to simulate the E-coat process, suggesting the contribution of PAMAM in the enhanced chemical stability in an alkaline environment. Therefore, an intermediate range of addition of PAMAM (50 ppm) is optimal to (1) avoid excessive voids formation, (2) promote some Cu cluster formation and thus enhance the Zr-based coating formation, and (3) incorporate organic components into the coating to improve the adhesion of the subsequent coatings. Overall, this work furthers our knowledge on the formation mechanism of an effective and environmentally friendly hybrid conversion coating for corrosion inhibition, demonstrating a critical processing-structure-property relationship. This study will benefit future development of green and effective surface treatment technology.

Keywords: XPS; coating growth; conversion coating; metal−organic; surface treatment.