Snapshot of microglial physiological functions

Neurochem Int. 2021 Mar:144:104960. doi: 10.1016/j.neuint.2021.104960. Epub 2021 Jan 15.

Abstract

Microglia as a defensive arm of the nervous system emerged early in evolution. The surveilling microglia with motile and ramified processes are the main phenotype in the healthy CNS; the surveilling microglial patrol neuronal somata, dendrites, dendritic spines and axons. Increasing evidence suggests that microglia play fundamental roles in development, maturation and ageing of the brain, as well as contribute to a variety of physiological brain processes including sleep and circadian rhythm. Physiological state of microglia is tightly regulated by brain microenvironment and controlled by a sophisticated system of receptors and signalling cascades including ionotropic and metabotropic purinoceptors, pattern-recognition receptors, and receptors for chemokines and cytokines. Microglia also utilise ion channels and transporters in regulating ionic homeostasis and various aspects of microglial function. The major ion transporters expressed by microglia include Na+/H+ exchanger 1 and Na+/Ca2+ exchangers, which are involved in regulation of pHi and Ca2+ homeostasis during microglial physiological responses. Microglial cells control development, maturation and plasticity of neuronal ensembles through controlled physiological phagocytosis of synapses or synaptic fragments - processes known as synaptic pruning and trogocytosis. This special issue on "Physiological roles of microglia" is an assembly of papers written by the leading experts in this research field. We start this special issue with this snapshot of microglial physiological functions as a prelude to the indepth discussion of microglia in physiological processes in the nervous system.

Keywords: Microglia; Neuroprotection; Physiology; Receptors; Synaptic pruning; Synaptic transmission; Transporters.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Brain / cytology
  • Brain / physiology*
  • Humans
  • Microglia / physiology*
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*
  • Neuroprotection / physiology
  • Synapses / physiology*
  • Synaptic Transmission / physiology